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Abstract

In this work we focus on vision-based gait recognition.
Most of the existing works utilize silhouettes or pose which
either requires additional processing or specialized sensors.
Moreover, these methods use a supervised approach where
subject identities are required. We propose GaitZero, a
novel unsupervised framework for learning gait signature
from RGB videos which does not require subject identities
across gait instances. Learning a gait signature directly
from RGB videos without the use of labels presents two main
challenges, 1) how to learn a meaningful gait signature in
presence of appearance covariates, and 2) how to learn a
discriminative signature without any labels. We propose to
utilize temporal self-similarity to extract gait patterns from
a video. Temporal self-similarity focuses on the evolution
of gait and helps in ignoring appearance biases in RGB
videos. GaitZero is trained using a self-contrastive loss for-
mulation to learn a discriminative gait signature. The pro-
posed self-contrastive objective utilizes a negative sample
with similar appearance which further mitigates the effect
of covariates. We demonstrate the effectiveness of the pro-
posed approach on two different benchmark datasets, FVG
and CASIA-B. GaitZero achieves ∼80% accuracy on FVG
dataset without the use of subject identification which is
comparable to recent supervised methods.

1. Introduction

Gait represents a person’s walking pattern and is one of
the many identifying characteristics of humans. It has a
wide range of applications in social security [6], authenti-
cation [29, 33], and tracking [3]. A subject’s gait informa-
tion can be captured using various wearable sensors, such as
pressure sensors [36] and accelerometers [15,28], however,
use of such sensors require subjects’ consent and coopera-
tion which limits its applications. Vision-based gait analy-
sis overcomes this limitation due to its non-invasive nature

(a) A gait sequence taken from the CASIA-B [50] dataset

(b) (c) (d) (e)

Figure 1. Visualization of temporal self-similarity matrices (TSM)
inferred by GaitZero. Figure 1b: full body, 1c arms region, 1d:
legs, and 1e: head. We observe different repetitive patterns for
arms and legs with three peaks. The head region shows no pattern
due to minimal movement during walking.

where the gait sequence can be captured from a distance.
There have been several advances in vision-based gait

recognition using deep networks with encouraging perfor-
mance [12, 42]. However, most of these methods utilize
a supervised approach where subject identification is re-
quired for each gait instance. These existing methods can
be mainly categorized into two different types based on the
modality used; pose-based [2, 10, 32, 37], and silhouette-
based [19, 25, 44]. The use of silhouettes and pose modal-
ities is a positive step towards protection of the privacy of
individuals, but it comes with several limitations and chal-
lenges. First, converting a gait sequence to a silhouette or
pose requires additional preprocessing; second, the perfor-
mance of any method based on these modalities will be lim-
ited by the effectiveness of the preprocessing step; and fi-
nally, although pose modality can be captured using spe-
cialized sensors, such as Kinect [51], these sensors can be
erroneous in uncontrolled environments and a requirement
of such sensors limits the practical application of these ap-
proaches. Moreover, supervised training of deep networks
requires a large amount of annotations which can be very
challenging and expensive to collect.

In this work we aim at addressing these limitations and



explore the use of RGB video for gait recognition in an un-
supervised setting. We propose GaitZero, which can learn
to extract a meaningful gait signature directly from RGB
frames without any subject identification on gait instances.
The use of RGB videos for learning gait signature in an
unsupervised approach brings several challenges. First, it
can be difficult to learn a discriminative gait signature due
to lack of annotations on gait instances. Second, the use
of RGB frames adds a lot of covariates such as appear-
ance, clothing, background, etc., which are not important
for learning a gait signature. Moreover, lack of annotations
makes it harder to ignore such covariates.

GaitZero is our attempt to address some of these chal-
lenges and learn an effective gait signature without subject
identities. We utilize temporal self-similarity to learn the
evolution of gait and capture how the body posture changes
with time. The use of self-similarity helps in ignoring co-
variate features as it learns from frame similarities instead
of visual features. Contrastive learning has recently shown
impressive performance in learning discriminative features
without using any labels [9]. Inspired by this, we propose a
self-contrastive objective for GaitZero which helps in learn-
ing a discriminative gait signature. We utilize a sample with
randomly shuffled frames from a gait sequence as additional
negative example which enables GaitZero to ignore appear-
ance biases and focus more on the temporal aspect of gait.

GaitZero is trained end-to-end with the help of self-
contrastive loss without any subject labels. We evaluate
our approach on two different benchmark datasets including
FVG [52] and CASIA-B [50]. We also demonstrate the ro-
bustness of GaitZero against domain shifts across datasets,
where we found that a single trained model can perform
well on both CASIA-B and FVG datasets. GaitZero is very
effective for knowledge transfer and it is found that it easily
generalizes to a target domain with very limited unlabelled
samples. We make the following contributions in this work,

• We propose GaitZero, an unsupervised method for gait
recognition using RGB videos. This is the first work
addressing this problem to the best of our knowledge.

• We propose a novel TSM Pyramid architecture which
effectively captures evolution of gait to learn a mean-
ingful gait signature.

• We introduce a self-contrastive loss for learning a dis-
criminative signature and which enforces the model to
ignore appearance covariates in RGB videos.

2. Related work

The two main modalities used for vision-based gait
recognition are silhouettes [19, 24, 25, 38, 49] and pose
[7, 20, 23, 27, 31, 48]. Most existing works in gait recogni-
tion typically rely on sequences of silhouettes for learning
a gait signature [8, 12, 19, 24, 25, 38, 45, 45, 49]. The tem-

poral nature of gait demands the injection of time-relevant
feature information. for which 3D convolutions have been
used as shown in [19,24,25,45], and individual frame-level
features have been aggregated as shown in [8, 12, 38, 49].
LSTMs [8,38], transformers [49] and 1D convolutions [12]
have proven to be effective for such aggregation. Further,
works like [8, 12, 13] show that splitting silhouette frames
into small sections can improve signature extraction. Sil-
houettes ensure that the subjects’ privacy is retained. In
addition, all the biases and covariates present are easily ig-
nored while learning the gait signature. However, obtaining
silhouettes from RGB videos requires additional processing
which is not always desirable.

In several works, pose has also been utilized to learn a
gait signature [7, 10, 11, 20, 21, 23, 27, 31, 35, 48]. Most of
these works assume the availability of accurate pose, while
[20, 21] adopt end to end approaches with pose features as
their bottleneck. However, these methods also face the ex-
isting issue of feature obfuscation created by the scenic co-
variates. Relying on accurate pose-estimation algorithms
introduces another set of challenges while using pose for
gait recognition, introducing additional computations with-
out significant gains in performance.

Focusing on real-world application, [52] has attempted
to learn gait signatures utilizing RGB videos. Like prior
works, this method also extracts frame-level features to de-
velop a signature. We argue that using frame level features
is not effective as motion information is not taken into ac-
count - which is very crucial for a gait signature.

In this work, we utilize a raw RGB video stream to learn
a gait signature which does not require any processing to
obtain silhouettes as an additional step. Moreover, all the
existing works assume the availability of subject identities.
Efforts have been made to learn gait signatures via semi-
supervised learning but they require a pre-training step in
addition to labels for fine tuning [22,26,31]. In contrast, we
propose an unsupervised method, which does not require
any finetuning using labels. Furthermore, the lack of pre-
processing allows for our architecture to be directly applied
to many surveillance applications.

3. Proposed approach
Given a video Vi representing a gait sequence for any

subject Si, our goal is to extract a gait signature γi such
that it is similar to the signature extracted from other gait
sequences of the same subject Si. We randomly sample n
contiguous frames to get a segment V s

i = {v1, v2, ..., vn}.
GaitZero takes these sequential frames as input and pro-
vides a gait signature γ = F(V ) as output where F rep-
resents the GaitZero model. It consists of three main com-
ponents, 1) visual encoder (Fv), 2) temporal self-similarity
module (Fs), and 3) gait evolution encoder (Fe).

The visual encoder Fv takes a video V with n



Figure 2. Overview of GaitZero. It takes RGB gait sequence as input and provide a gait signature γ. First the visual encode Fv extracts
frame-wise embeddings for the input video. These embeddings are extracted at multiple scales to build a feature pyramid. This feature
pyramid is used further to construct a TSM pyramid and extract temporal gait signature γt with the help of gait evolution encoder Fe. The
temporal gait signature is aggregated with the posture gait signature γp to obtain the final gait signature γ.

frames as input and generates per-frame embeddings e =
[e1, e2, ..., en]. These per-frame embeddings are used by
the temporal self-similarity module Fs to obtain a self-
similarity matrix Ms. This self-similarity matrix Ms is
produced at multiple scales with varying number of hori-
zontal segments in the input video frames. The temporal
self-similarity module Fs finally provides a TSM Pyramid
T p which consists of self-similarity matrices Ms for all the
segments at varying scales. The TSM Pyramid T p is fed
to the gait evolution encoder Fe which outputs the embed-
dings γt encoding the temporal aspect of gait. In addition,
the per-frame embeddings e are aggregated together to get
posture encodings γp and both these embeddings, γt and
γp are combined together to obtain a gait signature γ. An
overview of the complete architecture is shown in Figure 2.

3.1. Visual encoder

We extract independent embeddings for each frame in
the input video which allows us to compute the temporal
self-similarity for gait evolution. The visual encoder Fv

comprises of a ResNet18 [18] model which provides 2D
conv features for each frame vi of the input video V . The
output of the visual encoder is a sequence of frame-wise
embeddings e = [e1, e2, ..., en] which is sent to the tem-
poral self-similarity module. To obtain the embeddings for
visual posture γp for the gait signature, we perform mean-
pooling, augmenting the temporal information present in
the TSM Pyramid. The mean-pooling of frame-wise fea-
tures is inspired by Gait Energy Images, GEIs [16], which
have proven to be effective in gait recognition.

3.2. Temporal self-similarity

Temporal self-similarity matrices (TSMs) have shown to
be a promising for vision based tasks with repetitive pat-
terns [43]. Also, self-similarity has been found effective

in prior classical methods for gait analysis [4]. Moreover,
TSMs are easily interpretable by humans, which can give
important insights about the input sequence. Due to its
repetitive nature, we propose to model gait using TSMs.
Given a sequence of frame-wise embeddings, a TSM can
be constructed by computing the similarity of the embed-
ding of a frame with the embeddings of all other frames.

We use the frame-wise latent embeddings e to construct
a self-similarity matrix by Ms by computing all pairwise
similarities. First, we send the frame-wise visual embed-
dings e through a 3D convolution layer to supplement the
network with temporal information before constructing the
TSM Pyramid. This helps in capturing local temporal infor-
mation along with frame-wise visual features. The tempo-
ral context captures short-term motions [43, 47] and allows
the network to differentiate between visually similar frames
with different motion. For example, a leg might be mov-
ing up or down while walking in a gait sequence. The em-
beddings after 3D convolution are passed to a max-pooling
layer to reduce the dimensionality and obtain frame-wise
sequence of embeddings ê = [ê1, ê2, ..., ên].

Similarity between two different frames vi and vj is
computed as Ms

i,j = f(êi, êj) using a similarity function
f(.). We use euclidean distance to compute the similarity
between two frames, f(i, j) = −||i− j||.

Feature pyramid map Different body parts follow a
unique motion pattern when a person walks. These patterns
play an important role independently in defining a gait sig-
nature along with the whole body movement. This aspect
has been found to be very effective in prior-works for person
re-identification [14] and even gait recognition [12]. Moti-
vated by this, we propose to utilize the visual embeddings
at different scales where we divide the input video frames
into horizontal segments. We take the input video sequence



V = {v1, v2, ..., vn} with n frames and split each frame vi
horizontally at C different scales. For each scale c ∈ [1, C],
we obtain 2c−1 different segments and this results in a set
of horizontal slices L for each frame where,

L = {(si,j |j ∈ {1...2i−1})|i ∈ {1...C}}.

Here si,j is the jth slice at the ith scale. Each slice si,j is
part of the video V and consists of n frames. These slices
are passed through the visual encoder Fv which is shared
across all the slices and provides a feature pyramid map,

F p = {(wi,j |j ∈ {1...2i−1})|i ∈ {1...C}}.

where wi,j is feature vector of the jth slice at the ith scale.

TSM pyramid Using the feature pyramid map F p, we
construct a TSM pyramid to encode the evolution of pose at
different scales. Each scale Wc in F p can be given by

Wc = {wc,1, ..., wc,2c−1},

where each wc,j consists of n embeddings, one for each
frame. The embeddings wc,j in the feature pyramid map
are fed to the temporal self-similarity module Fs which is
shared between all embeddings across all the scales. Com-
puting self-similarity on the frames for these embeddings
gives 2c−1 self-similarity matrices

tc = {tc,1, ..., tc,2c−1},

where tc is a set containing 2c−1 number of n × n self-
similarity matrices, at the cth scale. The complete TSM
Pyramid T p = {t1, ..., tC} is computed by stacking tc’s for
all the C scales.

3.3. Gait evolution encoder

The TSM pyramid T p is then used to obtain temporal
embeddings γt for the gait signature. The gait evolution
encoder Fe takes the self-similarity matrix Ms and learns
a temporal embedding for each matrix in the TSM Pyramid
T p. The encoder Fe is shared across all the matrices in the
pyramid and the obtained embeddings are concatenated to
generate the temporal embedding γt.

The self-similarity matrix Ms consists of n× n similar-
ity values between each pair of frames in the input video.
The self-similarity matrix is first passed through a 2D con-
volution layer to transform the similarity values to latent
features. A feature vector for each frame is obtained by
combining all latent features in one row of Ms, representing
the similarity of that frame with all other frames. The fea-
tures for all n frames are converted to a sequence and passed
through a transformer encoder [41]. This architecture is in-
spired by [43] where a transformer model was found effec-
tive for encoding self-similarity matrices. The output se-
quence is then averaged over all positions to get the final
embedding of the input matrix Ms.

3.4. Contrastive objective

We rely on contrastive learning [9] to train the proposed
model. In a traditional contrastive objective, N examples
are randomly sampled, and a loss is computed on pairs of
augmented examples with a total of 2N data points. For
each positive pair, all other 2(N − 1) samples are treated as
negative examples. In this traditional formulation the neg-
ative examples always come from different samples in the
mini-batch. We propose a self-contrastive objective where
we also sample negative examples from the positive pairs.

We propose random shuffling of frames for sampling a
negative example for any video. The random shuffling will
have a different sequence of frames but it will still have sim-
ilar appearance in all the frames. However, the gait evolu-
tion pattern will be different. Treating this as a negative ex-
ample will enforce the network to ignore static appearance
features for learning a gait signature.

We introduce two such negative samples, resulting in a
total of 4N data points in any mini-batch with N exam-
ples. The self-contrastive loss for a pair of positive exam-
ples (i, j) is defined as,

li,j = − log
exp(sim(γi, γj)/τ)∑4N

k=1 1[k ̸=i] exp(sim(γi, γk)/τ)
, (1)

where γi and γj represent gait embeddings for a positive
pair, γi and γk represent a negative pair, 1[k ̸=i] ∈ {0, 1}
is an indicator with value 1 iff k ̸= i, τ is a temperature
parameter, sim is the cosine similarity between a pair of
embeddings. The final loss is computed only for the positive
pairs, both (i, j) and (j, i), ignoring the additional negative
examples as there will be no positive pair for such samples.

4. Experiments
Datasets We perform our experiments on two different
benchmark datasets, Frontal View Gait (FVG) [52] and
CASIA-B [50]. FVG is a recently collected RGB gait
dataset [52]. It comprises of 226 subjects, each with 4 dif-
ferent walking conditions and 3 different viewpoints. The
dataset is captured keeping frontal view angles in mind and
the videos are captured from 0◦and 45◦on both the sides.
We follow the evaluation protocol from [52] and use the first
136 subjects for training and the remaining 90 subjects for
evaluation. The normal walking video from the frontal view
is used as the gallery, and the remaining videos are used as
probes. CASIA-B is one of the most popular datasets avail-
able for gait recognition [50]. Traditionally, this dataset has
been used in the form of pre-processed silhouettes, but we
use the original RGB videos. It comprises of 124 subjects,
where the first 74 subjects are used for training and the re-
maining 50 subjects for evaluation. We follow the existing
protocol where the first four normal walking sequences are
used as galleries and the remaining as probes.



Supervision mode Variation WS CB CL CBG ALL
TDR@FAR 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

Supervised

PE-LSTM [52] 79.3 87.3 59.1 78.6 55.4 67.5 61.6 72.2 65.4 74.1
GEI [17] 9.4 19.5 6.1 12.5 5.7 13.2 6.3 16.7 5.8 16.1

GEINet [34] 15.5 35.2 11.8 24.7 6.5 16.7 17.3 35.2 13.0 29.2
DCNN [1] 11.0 23.6 5.7 12.7 7.0 15.9 8.1 20.9 7.9 19.0

LB [46] 53.4 73.1 23.1 50.3 23.2 38.5 56.1 74.3 40.7 61.6
GaitNet [52] 91.8 96.6 74.2 85.1 56.8 72.0 92.3 97.0 81.2 87.8

Unsupervised

R2+1D [39] Contrastive [9] 72.3 85.8 69.7 78.8 30.0 45.5 70.0 84.0 61.2 75.0
R2+1D [39] Triplet [40] 74.6 86.1 69.7 75.8 24.9 44.7 77.2 88.6 63.9 76.2

ResNet [18] Contrastive [9] 73.3 89.2 75.8 84.9 37.2 53.6 73.0 83.2 65.4 78.6
ResNet [18] Triplet [40] 81.6 92.1 78.8 87.9 36.8 48.6 80.2 90.3 70.9 81.1

GaitZero (ours) 87.1 95.1 97.0 100.0 53.6 69.2 83.4 93.7 78.1 87.6

Table 1. A comparison of performance on the FVG [52] dataset, showing supervised methods and unsupervised baselines along with
GaitZero. Metrics reported here are True Detection Rate at 1% and 5% False Acceptance Rate. The best unsupervised scores are written
in bold, and the best supervised scores are underlined. It can be seen that GaitZero is able to achieve a comparable performance with
supervised approaches without the use of any labels.

Probes Methods Probe view Mean0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM

R2+1D [39] Contrastive [9] 66.7 66.8 58.7 72.0 66.4 68.0 68.5 71.7 56.8 65.4 56.2 68.3
R2+1D [39] Triplet [40] 59.2 63.0 42.6 74.1 55.0 66.4 60.3 66.4 58.5 63.1 44.7 63.0

ResNet [18] Contrastive [9] 57.6 61.1 62.3 75.4 62.1 69.4 68.8 69.3 65.4 66.8 62.1 68.6
ResNet [18] Triplet [40] 74.3 54.6 57.3 78.6 65.8 72.6 62.0 74.3 63.0 67.3 62.6 69.6

GaitZero (ours) 69.2 68.6 70.6 69.8 78.4 76.4 75.8 78.4 69.5 70.6 74.3 72.9

BG

R2+1D [39] Contrastive [9] 53.9 55.5 45.8 58.8 51.7 53.1 48.5 56.9 31.7 48.2 34.5 52.2
R2+1D [39] Triplet [40] 49.6 53.0 38.4 63.6 39.6 57.2 43.9 58.0 41.5 48.3 26.4 51.4

ResNet [18] Contrastive [9] 54.4 56.7 60.0 66.4 45.0 61.6 45.1 58.5 52.7 49.8 42.0 57.0
ResNet [18] Triplet [40] 67.7 49.9 52.4 69.8 51.4 57.2 43.4 63.0 46.5 54.7 50.3 58.4

GaitZero (ours) 64.8 62.3 65.7 65.5 70.3 69.2 66.9 68.4 59.1 62.8 69.3 65.8

CL

R2+1D [39] Contrastive [9] 9.8 12.0 10.7 9.5 9.9 11.2 8.8 10.7 7.7 10.5 9.0 10.3
R2+1D [39] Triplet [40] 8.9 9.3 8.6 12.6 10.0 12.3 8.1 10.8 7.0 8.6 5.6 9.7

ResNet [18] Contrastive [9] 13.7 13.3 12.4 13.2 9.8 11.7 9.9 14.0 9.3 11.8 8.9 12.0
ResNet [18] Triplet [40] 12.6 9.2 10.6 10.7 8.1 12.6 9.3 11.6 9.7 8.0 7.7 10.2

GaitZero (ours) 19.1 20.4 18.5 14.0 18.3 13.2 12.2 14.3 9.3 14.1 15.1 15.3

Table 2. A comparison of performance on the CASIA-B [50] dataset with unsupervised baselines along with GaitZero, excluding identical
view cases. Average retrieval accuracy for each probe angle is reported for three different walking conditions.

4.1. Implementation details

We use PyTorch [30] to implement our approach and
train our model with Adam optimizer with a batch size of
16 and a learning rate of 1e-4. We use a resolution of 64x32
with n = 32 frames in a video. To construct the feature
pyramid map, we split the input video horizontally at C =
4 scales. The ResNet18 model used in the visual encoder is
initialized using pretrained weights from ImageNet. We ex-
tract the visual features from the third block of ResNet18
followed by average pooling. For our gait evolution en-
coder transformer, we use 8 heads with 512 feedforward
dimensions. The transformer outputs a 256-size embedding
for each TSM in the pyramid. We performed person detec-
tion using YOLO-v4 [5] on CASIA-B videos to extract the
cropped gait sequences. For FVG, we use the preprocessed
cropped videos which are provided with the dataset.

Augmentations for contrastive learning We utilize the
following set of augmentations to obtain positive pairs for
contrastive loss; 1) walking speed augmentation using vary-
ing sampling rate to take into account variations in walking
speed, 2) gamma augmentation for lighting variations, 3)
random horizontal flipping, 4) random cropping of frames,
and 5) random starting phase of gait by selecting a random
starting frame. The positive pairs for contrastive loss are
obtained by randomly applying these augmentations on a
given instance of gait sequence. A gait instance can be cap-
tured from multiple viewpoints and therefore the positive
pairs can be from same or different viewpoints. This also
helps in learning a view-invariant gait signature.

4.2. Inference and evaluation metrics

Since we use n frames from a sequence to compute the
gait signature, we split the video into segments of n frames
each during inference. The mean of the embeddings of each
of these segments is considered as the gait signature for the



Variation WS CB CL CBG All
R2+1D [39] Contrastive [9] 68.3 57.6 24.9 65.4 56.6

R2+1D [39] Triplet [40] 67.7 60.6 22.8 73.0 58.4
ResNet18 [18] Contrastive [9] 75.0 72.8 37.2 73.5 65.5

ResNet18 [18] Triplet [40] 77.9 69.7 34.6 76.0 67.2
GaitZero (ours) 89.4 97 50.6 85.2 79.5

Table 3. Accuracy of GaitZero and other unsupervised baselines
on the FVG [52] dataset.

subject. The signature of the probes is compared with all the
galleries, and the closest match gives the predicted ID of the
subject. We use the standard evaluation metrics and proto-
cols for both CASIA-B [50] and FVG [52]. For CASIA-B,
we report rank-1 retrieval accuracy and for FVG, true posi-
tive rate@1% and 5% false positive rate is used. In addition,
we also report rank-1 retrieval accuracy for FVG.

4.3. Baselines

This is the first work focusing on unsupervised gait
recognition using RGB videos to best of our knowledge.
Therefore, we developed some baseline approaches using
existing methods to validate the effectiveness of GaitZero.
We developed four different baselines with the help of two
different backbones and two unsupervised loss functions.
As a backbone, we consider R(2+1)D [39] and ResNet18
[18] architectures. R(2+1)D is one of the best models for
learning spatio-temporal features and ResNet18 is one of
the best model for extracting spatial features using 2D con-
volutions. We use R(2+1)D model to directly extract the
gait signature using a given input video. In the case of
ResNet18, we extract features for each frame and then av-
erage them to obtain a gait signature. We utilize two differ-
ent objective functions to train these models, triplet margin
loss [40] and contrastive loss [9].

4.4. Results

FVG dataset The FVG dataset has five different proto-
cols, Walking speed (WS), Carrying Bag (CB), Clothing
(CL), Cluttered Background (CBG) and ‘All’. The perfor-
mance of GaitZero on these protocols is shown in Table 1.
The clothing protocol is found to be the toughest for our
model, since the gait can change significantly with a person
wearing a jacket. However, we find that the model performs
well on all other conditions, as well as the ‘all’ protocol.

CASIA-B dataset The CASIA-B dataset consists of three
different conditions, Normal Walking (NM), Baggage (BG)
and Clothing (CL). There are two different protocols to cre-
ate the gallery set for a probe, one excluding identical view
cases are the other including identical view cases. The cor-
responding evaluation scores are shown in Table 2 and Ta-
ble 4 respectively. We observe that GaitZero performs rea-

Method Probe condition
NM BG CL

R2+1D [39] Contrastive [9] 68.3 52.2 10.3
R2+1D [39] Triplet [40] 63.0 51.4 9.7

ResNet [18] Contrastive [9] 68.6 57.0 12.0
ResNet [18] Triplet [40] 69.6 58.4 10.2

GaitZero (ours) 75.3 68.6 16.2

Table 4. Performance comparison on the CASIA-B [50] dataset,
showing unsupervised baselines along with GaitZero, including
identical view cases. Mean scores for all probe views are shown.

sonably well on Normal Walking and Baggage conditions.
Table 2 also shows the effect of different probe angles on
GaitZero. In general, best performance is achieved when
probe angles are near to 90◦since complete gait information
can be captured from such viewpoints, as opposed to ex-
treme angles. Further, including identical viewpoints in the
gallery set gives an expected improvement in performance
as shown in Table 4, because the gait sequence is inherently
similar and the model does not have to filter out view infor-
mation in the final gait signature.

Comparisons The comparison of GaitZero with existing
approaches and baselines for FVG is shown in Table 1 and
Table 3. GaitZero performs better than these baselines on
all protocols, even achieving a perfect score in the Carrying
Bag condition at 5% False Positive Rate. We also observe
that ResNet backbones are performing better than R2+1D
baselines, but as shown in Sec 4.6, they are focusing more
on the appearance features. We also compare GaitZero with
the exisiting supervised approaches on FVG. It can be ob-
served that GaitZero achieves a comparable performance
with supervised methods, even without the knowledge of
the subjects’ identity, which is very impressive.

The comparison of GaitZero with the baselines on
CASIA-B is shown in Table 2. CASIA-B is a more
challenging dataset due to large variations in viewpoints.
GaitZero achieves a notable increase over the unsuper-
vised baselines, with the increase being most significant for
the Baggage protocol. Since most existing approaches on
CASIA-B use either silhouettes or pose modalities, we do
not compare with the other supervised approaches. The re-
sults for these supervised approaches are provided in the
supplementary material for reference.

4.5. Ablation study

Effect of TSM pyramid To study the effect of the TSM
pyramid on GaitZero, we remove the pyramid and perform
two experiments: 1) using a single TSM instead of the pyra-
mid, and 2) slicing the input video uniformly to get C slices,
instead of building a pyramid using multiple scales. The
performance reduces in both these experiments, giving 75%



Description Signature Loss Accuracy
γt γp SC TC

γp + SC ✓ ✓ 67.0
γt + SC ✓ ✓ 62.2

γt + γp + TC ✓ ✓ ✓ 77.4
GaitZero (γt + γp+ SC) ✓ ✓ ✓ 79.5

Table 5. Effect of different components on GaitZero. SC denotes
proposed self-contrastive loss, TC is the traditional contrastive loss
[9]. γt and γp are the temporal and pose signatures.

accuracy in the single TSM case and 76% in the C uni-
form slices case. This demonstrates that the TSM pyramid
is helpful in extracting a better signature from the input as
it enables the model to focus on multiple spatial scales at
once, capturing both global and local gait evolution.

Effect of self-contrastive learning In this experiment,
we analyse the effect of introducing additional negative
samples during training. To do this, we compare the
performance of GaitZero trained using the proposed self-
contrastive loss formulation with one trained with the tra-
ditional contrastive loss [9]. The results are summarized in
Table 5. It can be seen that self-contrastive learning indeed
helps the model. Treating shuffled frames as additional neg-
atives can be seen as a form of data augmentation, generat-
ing more data for the model to learn from. Additionally,
it also helps in ignoring covariates like clothing and face
which are irrelevant to gait.

Effect of Pose Signature In this experiment, we try to
analyze the importance of γp, the pose signature. To this
extent, we discard the pose encoder from the architecture,
and just use γt as the overall gait signature. We observe a
significant drop in performance, as shown in Table 5. This
shows that the pose signature γp supplements the temporal
signature γt to obtain a better discriminative gait signature.

Effect of Temporal signature Next, we observe the ef-
fect of removing γt on the performance of GaitZero. With-
out γt, the model will only focus on the appearance aspect
of gait. Static information has historically proven to be use-
ful as GEIs [16] in gait recognition. However, as mentioned
in Table 5, removing the temporal signature γt drastically
reduces performance, which shows that capturing temporal
information of gait helps in getting a better gait signature.

4.6. Discussion and analysis

Analysing TSM Self-similarity matrices are interpretable
features in our model. The correlation between the differ-
ent body parts of the subject and the corresponding self-
similarity matrices is illustrated in Fig. 1. Some sampled
frames from the video are shown in Fig 1a. The TSM for

Figure 3. TSMs for an extended video sequence. Same border
denotes same scale. The difference between local and global gait
evolution can be clearly seen.

the horizontal slice at the arms’ level is shown in Fig 1c. In
the video, only the left arm is visible, and the TSM of the
arms shows a distinct boundary at that point, indicating the
start of a new phase in the gait cycle. Similarly, Fig 1d indi-
cates three such boundaries, and the leg movement indeed
reaches its peak three times. The TSM for the complete
frame without slicing is illustrated in Fig. 1b, showing the
repetition pattern of the body as a whole. Interestingly, Fig
1e almost shows no variation, as the head displays minimal
movement in the gait cycle.

To further visualize the features learnt by the visual en-
coder Fv , we take an entire video sequence from FVG and
compute TSMs for a long video. The resulting pyramid is
illustrated in Fig. 3. Interesting patterns can be observed
in these TSMs, with distinct boundaries between different
phases of gait cycles. The stark contrast between TSMs of
different scales also shows the difference between global
gait evolution and local pose changes.

Generalization to silhouettes We also conduct an exper-
iment to check the generalizability of our model to silhou-
ette inputs. We find encouraging results, with the model
achieving 67.2% (Excluding identical view cases) accuracy
on the Normal Walking condition on CASIA-B silhouettes,
which shows that TSMs can be used even for silhouette in-
puts. Detailed results for this experiment are provided in the
supplementary material.

Robustness Some existing approaches for gait recogni-
tion need different architectures for different datasets [8,12]
which limits their generalizability practical scenarios. We
solve this problem by combining both FVG and CASIA-B
datasets and training a new model on this mixed dataset. It
was observed that a single model, with the same weights,
can perform well on both the datasets, achieving 75.2%
on FVG’s ‘all’ protocol and 72.3% on CASIA-B’s Normal
Walking condition. This demonstrates the method’s robust-
ness to domain shifts across datasets.

We analyze GaitZero for transfer learning, where we
used CASIA-B for pre-training as it is much larger in size
as compared to FVG. Then, we fine tune the model using
limited training data from FVG. It is important to note that



Portion of FVG data Pretrained Scratch
0% 67.8 -
5% 77.8 64

10% 78.6 69.4
15% 79.0 73.2
20% 82.1 74.3

Table 6. Performance of GaitZero when pre-trained on CASIA-B
and fine tuned on a portion of FVG, compared with training from
scratch. The metric reported here is TPR@1% FPR. GaitZero is
able to surpass the best supervised performance on FVG [52] with-
out using any annotations.

Figure 4. Comparison of GaitZero with different baselines on
FVG, evaluated on RGB and Grayscale data. T stands for Triplet
loss [40], and C stands for Contrastive loss [9]. It can be inferred
that the ResNet baselines are mostly focusing on appearance and
color features, while GaitZero is looking at the gait of the subject.

no annotations are used during both pre-training and fine-
tuning. As shown in Table 6, GaitZero is able to outper-
form current supervised methods using this approach, with-
out using any labels. This demonstrates the generalization
capability of GaitZero across datasets.

Covariate analysis For a deep neural network working
on RGB data, it can be difficult to ignore color and appear-
ance biases. In this experiment, we analyze the effects these
covariates can have on the network. To test the effect of fa-
cial features on GaitZero, we evaluate the model using test-
ing sequences with the face of the subjects removed. As
shown in Fig. 5, removing the face does not affect perfor-
mance. Next, to test the effect of the color of clothing, we
evaluate our model and the baselines on grayscale videos.
The results are shown in Fig 4. While the ResNet baselines
are mostly focusing on the appearance and color features
to obtain a high accuracy, GaitZero is indeed extracting the
gait signature from RGB videos.

Occlusion We conduct experiments to analyze the effect
of occlusion on our method. The results are shown in Fig 5.
The input video is cut into four uniform slices, and various
slices are discarded while testing. We observe that GaitZero
is able to perform well even if some body parts are missing

Figure 5. Effect of occlusion on GaitZero during inference. The
horizontal axis shows which slices of the input data were used by
the model. It can be observed that removing any one horizontal
slice does not have a major effect, and the head does not have a
significant contribution in the gait signature.

in the input gait sequence, meaning that no single horizontal
segment is a critical factor, indicating the method’s robust-
ness to occlusion.

4.7. Limitations

Although GaitZero can provide very good performance
without the use of annotations, there are some limitations of
GaitZero. We observe that the method performs reasonably
well in normal conditions and is comparable to supervised
approaches, but it struggles with varying clothing condi-
tions. The lack of subject labels is the main reason for this,
because while training GaitZero has no knowledge of cross-
condition embeddings belonging to the same subject.

4.8. Ethics

Gait recognition is a very important problem in com-
puter vision research. An improper use of this technology
can raise privacy issues in the society. In this work we are
only using datasets which are officially authorized for re-
search purpose. These datasets are collected, released and
used with the consent of participating subjects. Moreover,
the proposed method does not require subject identification
which further minimizes the privacy concerns.

5. Conclusion
In this work we propose GaitZero, an unsupervised ap-

proach for learning gait signature from RGB videos. We
utilize temporal self-similarity and propose a TSM pyra-
mid to extract effective gait features. TSM pyramid mod-
els temporal gait evolution and operates at different scales
on the input video. GaitZero is trained using a novel self-
contrastive objective which helps in learning a discrimina-
tive feature and ignores appearance covariates. We evalu-
ated GaitZero on two different public benchmark datasets,
including CASIA-B and FVG. We observe that GaitZero
can achieve promising performance which is close to su-
pervised state-of-the-art methods on the FVG dataset. This



could be an interesting research direction for gait recogni-
tion as it also addresses the issue of privacy which is present
when we have to annotate a dataset.
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