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ABSTRACT
Video captioning is a challenging task of modelling the ob-
jects, their temporal information and interaction in order
to generate a textual description. Current models often fail
to model these objects and their interactions correctly, due
to lack of knowledge about them. In this paper, we propose
approaches to provide this knowledge through knowledge
bases like wordnet and conceptnet. We propose general en-
coder and decoder modules, which can be used on the top
of any architecture to insert knowledge. Leveraging the ad-
vancements in attention architectures, we develop knowl-
edge selectionmechanism for the abovemodules.Wedemon-
strate the efficacy of our model by extensive experiments
on two benchmark datasets, MSVD and MSRVTT. The pro-
posed model demonstrates better semantic consistency and
makes significant improvement over the baseline. Our ap-
proach not only helps in object modelling, but also helps in
further improving action prediction, as demonstrated in Fig-
ure 1.
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1 INTRODUCTION
Video Captioning is a core task in vision-language research. An
input video is used to automatically generate a natural language
description for it. This task is challenging as it involves both, text
modality and vision modality along with the time dimension. The
most common architecture for Video captioning is the encoder-
decoder architecture. The encoder module generates semantic rep-
resentations of videos using frame-wise features, motion features,
object level features etc. The decoder uses this semantic represen-
tation to generate a sequence of tokens as the natural language
description of the input video.
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A good video representation must have (i) Global context and
(ii)Regional context. Global context across the spatial dimension
can be captured using 2D CNNs. It is the encoding of the overall
scene in a specific frame, including background and foreground in
one single representation. Activities by subject and movement of
objects cannot be captured by looking at one frame. Such activities
can be encoded using 3D CNNs, which look along the temporal
dimension in a video. These also form a part of the global context
in the video representation.

Certain aspects of a video cannot be recognised by looking at the
video as a whole. Specialised CNNs, in the form of object detectors,
can be used to extract local object-level information to add to the
video representation. These object detectors ignore the global in-
formation and just focus on a small area, called as ROIs, computing
local features and adding them into the semantic video representa-
tions. For eg. consider a cropped image of a man. If we don’t look
at the full image, we don’t know whether he is a cricketer/chef; but
we can easily decide what he is based on the global information i.e.
background of the kitchen or the cricket field. As a result, the local
object-level information is poor and the resulting captions have
poor diversity.

Structured knowledge graphs like ConceptNet and WordNet [6]
are increasingly gaining popularity for NLG tasks. They provide
a way to input real-world, structured information and rules in
generated sentences.

Our proposed components are built upon SAAT[15]. SAAT ex-
plicitly predicts the actions to provide extra guidance apart from
linguistic prior. We improve upon the object-level information by
leveraging the real-world knowledge and rules from Knowledge
graphs, guided by the context from global visual features of the
video. We propose three different architectures to inject this addi-
tional information into the video representations.

Attention architectures have gained popularity in a wide variety
of domains like Images, NLG, Reinforcement Learning. In this pa-
per we use different variants of cross-attention to select external
knowledge for text generation module. In our work, we focus on
improving the regional context in a captioning model. We enhance
the local information by injecting KB knowledge using global fea-
tures in our VTKE module. The Knowledge base provides external
knowledge by optionally being guided by the visual information.

In summary, the major contributions of our study are as follows:

• Wepropose different architectures to leverage external knowl-
edge base(s) in vision-language tasks.

• We compare the effects of using different knowledge bases
for the video captioning task
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Baseline: a group of men are playing
Ours: a group of men are racing on a track
GT: a group of men compete in a track race

Baseline: a man is cutting a tomato
Ours: a man is cutting a piece of meat
GT: A man is cutting meat

Figure 1: Motivating examples for use of Knowledge Insertion in Video Captioning

• We compare the diversity in captions on using different
object detectors

2 RELATEDWORK
Video captioning: In earlier works on Video Captioning used
template-based approaches[1, 10], where prominent. With the ad-
vancements in Attention[11] architectures, encoder-decoder based
architectures[14, 15] took over the template based approaches.
Video captioning has been of interest to a wide audience due to
transferability to other vision-language tasks like Visual Question-
Answering, Embodied Vision, Text based navigation, and so on.

Object detection: Object detection is a widely popular task in
Computer Vision research, particularly because it is a sub-component
of various architectures. While object detection research has been
focused on predicting labels from a limited set of object categories
[4], we are primarily interested in object detectors with large set of
object categories like Yolo-9000 [9]. The progress on diverse object
detection like Oscar, etc can be leveraged to further improve the
results from our approach.

Attention andTransformers:Attention[11] has primarily been
used to selectively attend to parts of a sequence to obtain proba-
bilities corresponding to parts being attended. Transformers have
been central to multiple breakthroughs in deep learning, because
of their property to train parallely on GPUs. Recent breakthroughs
in attention architectures are driven by (i) the work on Image-GPT
by OpenAI, (ii) VilBert (iii) numerous other models of attention
developed for Vision-Language research. In our study, we devel-
oped attention architectures, which can be further extended to
build transformer architectures for selectively providing external
knowledge to the base model.

Lexical Knowledge Bases: WordNet, ConceptNet[5], Dbpedia
[3], NELL[7] are some of the commonly used knowledge bases.
They are built mainly built using textual information. Thus, usage
of knowledge base like VTKB, built using both visual and textual
information, can further enhance the performance of proposed ar-
chitectures on vision-language tasks. While WordNet and Concept-
Net are manually constructed, NELL is automatically constructed
from web. While these knowledge bases have been used for image

captioning, they have not been used for video-language tasks to
the best of our knowledge.

3 METHODOLOGY
3.1 Task Description
Given an input sequence of frames F = {F1, ..., Fn}, the task of video
captioning aims to generate a sequence of tokens S = {S1, ..., Sm}
as the natural language description. We uniformly sample 𝑘 frames
and generate a sequence of 2D features using ResNet101, f = {f1, ..., fk}.
For a fixed c, we select a 𝑐𝑡ℎ frame, and apply object detector
to get ROI features, bounding box coordinates and object labels
O = {O1, ...,OL}. Using the knowledge base KB, we obtain the re-
lated words of each object 𝑂𝑖 and obtain the KB output as
R = {{R1,1, ...,R1,KBmax }, ..., {Ri,1, ...,Ri,KBmax }...}. A word embed-
ding E is used to compute the representation 𝐸 [𝑅𝑖, 𝑗 ] for each word
𝑅𝑖, 𝑗 , which is used by the encoder and subsequently passed to the
decoder.

Encoder’s output is first used to generate SVO (subject, verb,
object) tuples, which are subsequently used by decoder, along with
the video’s encoding to generate the caption. The architectures pro-
posed by us can be classified into two types, depending on whether
they are used in SVO generation or used directly for sentence gen-
eration. Architectures in section 3.2.1 and 3.2.2 belong to the former
category, while 3.3.1 belongs to the latter.

We fetch 𝐾𝐵𝑚𝑎𝑥 related words for each detected object in the
input video. These related words’ embeddings for each of N words,
result in a large size vector. This vast raw form of external knowl-
edge is not directly usable by the model and a more efficient rep-
resentation is required. To this end, we propose two techniques
to encode raw knowledge embeddings into knowledge representa-
tions: (i) Context-Free Knowledge Targeting, and (ii)Visio-Textual
Knowledge Embedding.

3.2 Encoder
Inserting External knowledge in the encoding phase helps in gen-
erating SVO triplets.
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3.2.1 Context-Free Knowledge Targeting. This technique utilizes
a 1D convolution over the stacked knowledge embeddings. Given
the external knowledge vector 𝑅, we stack embeddings to form a
large vector

𝑅𝑠𝑡𝑎𝑐𝑘 = {{𝑅1,1; ...;𝑅1,𝐾𝐵𝑚𝑎𝑥
}....{𝑅𝑁,1; ....;𝑅𝑁,𝐾𝐵𝑚𝑎𝑥 }}

Running a 1D convolution across this vector gives us the external
knowledge representation for each object

𝐾 = 1𝐷_𝐶𝑜𝑛𝑣 (𝑅𝑠𝑡𝑎𝑐𝑘 )

Setting the stride 𝑠 and window size𝑤 appropriately can reduce
the dimension of the external knowledge so that it can be utilised
by the decoder.

Figure 2: Context-Free Knowledge Targeting Architecture

3.2.2 KB Guided Visio-Textual Knowledge Embedding. This tech-
nique aims to generate a knowledge representation guided by the
visual context in the frame. The 𝑐𝑡ℎ frame is chosen to provide
the context. 2D CNN features of the chosen frames are used as a
query to select from the available list of keys, which are the words
𝑅. The 2D CNN features have size 𝐹 . The KB guided visio-textual
knowledge embedding can be obtained by:

𝑄 =𝑊𝑞 ∗ 𝑞

𝐾 =𝑊𝑘 ∗ 𝑘

𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑇𝐾) (1)

where 𝑞 is the frame’s 2D feature, 𝑘 is a vector containing word
embeddings and 𝑎 is the final knowledge selection output. The
matrices𝑊𝑞 and𝑊𝑘 are learnable parameters, which map the query
and keys to a semantic𝑑−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space.𝑑 is a hyperparameter
which decides the size of the external knowledge representation in
this semantic space.

The output 𝑎 can be interpreted as the relevance score for each
of the 𝐾𝐵𝑚𝑎𝑥 words based on the visual context. This can be used
to compute the visio-textual knowledge embedding 𝐾𝐵𝑣𝑡

𝐾𝐵𝑣𝑡 = 𝑎 ∗ 𝑘𝑇 (2)

3.2.3 GCN Guided knowledge selection. Using the output from
knowledge base, we construct star graph for each object, with 𝑂𝑖
at centre and 𝑅𝑖,1, ..., 𝑅𝑖,𝐾𝐵𝑚𝑎𝑥

at the other ends of edges. Each of
the 𝐾𝐵𝑚𝑎𝑥 + 1 nodes is represented by the embedding of word
corresponding to that node. The graphs are passed through GCN,
Relu, GCN and at last softmax to obtain a sequence of probabilities.
These probabilities are further used to obtain the weighted external
knowledge 𝐾𝐵𝐺𝐶𝑁,𝑖 from the graph of a given object. External
knowledge vectors are stacked and passed to the the decoder.

3.3 Decoder
Inserting external knowledge in the decoder helps in selecting more
diverse words in the final captions.

3.3.1 KB Guided Knowledge Selection. This technique utilizes the
attention architecture to select knowledge from KB. Using frame-
wise features as q, words fetched from Knowledge base as k and v,
we compute 𝑄 =𝑊𝑞 ∗ 𝑞, 𝐾 =𝑊𝑘 ∗ 𝑘 , 𝑉 =𝑊𝑣 ∗ 𝑣

𝛼 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑇𝐾
√
𝑑

)
𝐾𝐵𝑣𝑒𝑐 = 𝛼 ∗𝑉 (3)

The 𝐾𝐵𝑣𝑒𝑐 matrix represents the external knowledge selected us-
ing the visual features. We also leverage recent advancements in
attention like the Multi-head attention[11] to further improve the
knowledge selection. Multiple heads ensure that our architecture
can focus on multiple frames to select knowledge. The default num-
ber of heads used for our study is 8, unless otherwise stated.

4 EXPERIMENTS
4.1 Datasets
MSVD: MSVD is a collection of short YouTube videos collected
by Amazon Mechanical Turk (AMT) workers. The videos depict a
single activity and are 10-15 seconds long. Each clip is annotated
with 40 captions. Following the standard split, we use 1200 clips for
training, 100 for validation and 670 for testing.

MSR-VTT: MSRVTT is a widely used benchmark for vision-
language downstream tasks like video captioning. We use the initial
version of MSRVTT which consists of 10K video clips categorised
into 20 domains. Each video has 20 annotations performed using
Amazon Mechanical Turk (AMT). We use the standard split [13]
- 6513, 497 and 2990 clips for training, validation and testing re-
spectively. MSR-VTT has higher diversity in the vocabulary and
hence is better suited for our approach. Due to the larger size of
the vocabulary, external knowledge is better incorporated in the
model for this dataset. Further, the captions of MSRVTT are more
diverse, which creates some more scope for external knowledge to
have an effect on the generated captions.

4.2 Evaluation Metrics
We use the CIDEr [12] score to evaluate our model and optimize for
hyperparameters. CIDEr focusses on consensus based evaluation,
rating captions higher when they are similar to how other people
describe the video. On the other hand, BLEU-n scores focus on
n-grams to make captions similar to the ground-truth. We observe
that if we optimize for BLEU-4 [8], the performance on other scores
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(a) Extraction of Query and Keys (b) Attention Computation

Figure 3: Mechanism of KB Guided Visio-Textual Knowledge Embedding

deteriorates faster than when we optimize for CIDEr. For sentence
generation, Cross Entropy loss is considered during training. We
train using this loss function and select the best model we obtain
using the the CIDEr score on the validation test.

4.3 Implementation Details
Data pre-processing, values of important relevant hyperparameters
like batch size. Mention about usage of ResNet, 3D CNN, etc and
other stuff done for preprocessing.

We use Resnet[2] 2D CNN features. A fixed number of equidis-
tant frames are extracted from each video and a feature representa-
tion of each of the frames is mean pooled to get the final 2D visual
features. For extracting temporal information, we use I3D as the 3D
CNN and obtain feature representation of the videos. Apart from
these global features, we experiment with various object detectors
to obtain object labels and the ROI-bounding box features to obtain
local information. All these correspond to the representation we
get from a given input video. We also observe that 𝜆 is an impor-
tant hyperparameter of the loss function, deciding the weightage
of the SVO loss with the Sentence generation loss. We perform
hyperparameter tuning on 𝜆 and observe optimal performance in
the range 14-17. Videos are processed in mini-batches. We set the
batch-size for MSVD as 8, and for MSRVTT as 20.We fix the number
of heads in MultiHead Attention to 8 in most of our experiments.
As evident from Table 1 and 2, word embeddings have a great effect
on the scores. We performed experiments with learned/parametric
embedding and word2vec.

4.4 Results
On the MSVD dataset, Visio-Textual knowledge embedding, when
used with Multihead attention, wordnet and the yolo-9000 object
detector, we obtain our best CIDEr score of 83.85, which is con-
siderably higher than the Base SAAT score of 78.08 obtained after
re-training the model using open-sourced code. This model was
trained using Reinforcement Learning strategy of sequence critical
sequence training.

On MSRVTT, Graph Convolution Network, when used with
Multihead attention, wordnet and the yolo-9000 object detector,

we obtain our best CIDEr score of 49.84, which is higher than the
Baseline SAAT model’s score of 49.21.

4.5 Ablation Study

We observe that Reinforcement Learning significantly boosted the
CIDEr scores only in the case of MSVD dataset, but not for MSRVTT.
Further, among encoders, Knowledge Guided Visio Textual Embed-
ding performed the best. Among decoders, MultiHead Attention
gave the best scores, but when no encoder was being used. This
might be because injecting external knowledge at multiple places
confuses the model.

We compare the effects of learned embeddings and pre-trained
word2vec embeddings, and see that the former is significantly better.
We also observe the effect of Graph Convolutional Networks in
the encoder. Using a GCN in MSRVTT gives marginally better
results. But in MSVD, the best performing models were obtained
by Knowledge guided visio textual embedding in the encoder part,
along with RL training.

5 CONCLUSION
In this paper, we propose knowledge insertion mechanism for video
captioningmodels, which uses external knowledge bases to improve
modelling of objects and their interaction. We also propose plug-in
encoder and decoder modules to leverage the external knowledge.
Additionally, we propose attention architectures to use visual infor-
mation to select external knowledge more effectively. We demon-
strate the efficacy on two benchmark datasets.
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Encoder Decoder Obj. Det. KB Embed. CIDEr Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rogue_L Spice
BASE SAAT 78.08 77.388 65.218 55.236 44.66 31.861 67.89 0.04764

GCN MHA Detectron WordNet Word2Vec 68.82 75.818 62.551 52.283 42.137 31.421 66.946 0.04697
VTKE MHA Detectron WordNet Word2Vec 74.01 76.417 62.945 52.496 42.068 31.359 67.291 0.0466
CFE Att. Detectron Wordnet Learned 77.4 76.165 62.664 52.408 42.421 31.315 67.48 0.04614
None Att. Detectron Wordnet Learned 78.54 77.355 64.171 53.296 42.779 31.293 67.229 0.04689
VTKE MHA Yolo Wordnet Learned 79.47 76.828 63.903 53.72 43.335 31.602 67.517 0.0482
CFE MHA Detectron Wordnet Learned 79.82 78.4 65.97 55.59 45.62 33.13 68.65 0.04765
None MHA Detectron Wordnet Learned 80.17 77.789 64.804 54.446 43.96 33.151 68.599 0.05019
VTKE None Detectron Wordnet Learned 80.86 77.401 64.203 53.885 43.584 33.172 68.582 0.05182
None MHA Detectron Conceptnet Learned 81.65 78.02 64.959 54.393 43.935 32.677 68.584 0.0513
VTKE MHA Detectron Wordnet Learned 81.67 78.682 66.601 56.505 46.281 32.839 68.774 0.05142
VTKE MHA Yolo WordNet Learned+RL 83.85 76.99 63.72 53.56 43.68 32.72 68.44 0.05164

Table 1: Our scores on the MSVD dataset

Encoder Decoder Obj. Det. KB Embed. CIDEr Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rogue_L Spice
BASE SAAT 49.21 80.096 65.892 52.285 40.349 28.189 60.853 0.06548

CFE MHA Yolo Conceptnet Learned 47.57 79.548 65.436 51.573 39.481 27.915 60.393 0.06503
None MHA Yolo Conceptnet Learned 47.75 80.119 65.777 51.932 39.896 28.341 60.478 0.06785
VTKE MHA Yolo Conceptnet Learned 48.88 79.385 65.019 51.535 40.021 28.369 60.515 0.06618
VTKE MHA Yolo Wordnet Learned 48.88 80.61 66.384 52.712 40.526 28.167 60.878 0.06614
None Att. Yolo Conceptnet Learned 49 79.758 65.621 52.284 40.401 28.159 60.727 0.06476
None MHA Yolo Wordnet Learned 49.66 79.677 65.684 52.283 40.43 28.073 60.93 0.06522
None Att. Yolo Wordnet Word2Vec 49.68 79.962 66.038 52.729 40.923 28.195 60.792 0.06501
GCN MHA Yolo WordNet Learned 49.82 79.964 66.391 53.099 41.135 28.221 61.243 0.06463
GCN MHA Yolo Wordnet Learned 49.84 79.96 66.39 53.1 41.13 28.22 61.24 0.06463

Table 2: Our scores on the MSRVTT dataset
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Baseline: a man is cutting a fish
Ours: a man is cutting a piece of meat
GT: a chef carves some meat

Baseline: a woman is riding a horse
Ours: a woman is riding a motorcycle
GT: a man and woman are riding in the bike

Baseline: a man is putting some food
Ours: a man is putting butter on a tortilla
GT: a man is eating pizza

Baseline: a person is cutting a vegetable
Ours: a woman is slicing some vegetables
GT: a woman is chopping vegetables

Baseline: a man is driving a car
Ours: a man is lifting a car
GT: a man is lifting a car

Baseline: a woman is riding on a boat
Ours: a woman is riding a horse
GT: a man is riding a horse

Figure 4: Comparison of descriptions generated by our Model, Baseline and Ground truth, along the manually selected key
frame of corresponding Video
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