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Abstract

Gait recognition is an important biometric technique
over large distances. State-of-the-art gait recognition sys-
tems perform very well in controlled environments at close
range. Recently, there has been an increased interest in gait
recognition in the wild prompted by the collection of out-
door, more challenging datasets containing variations in
terms of illumination, pitch angles and distances. An im-
portant problem in these environments is that of occlusion,
where the subject is partially blocked from camera view.
While important, this problem has received little attention.
Thus, we propose MimicGait, a model-agnostic approach
for gait recognition in the presence of occlusions. We train
the network using a multi-instance correlational distillation
loss to capture both inter-sequence and intra-sequence cor-
relations in the occluded gait patterns of a subject, utiliz-
ing an auxiliary Visibility Estimation Network to guide the
training of the proposed mimic network. We demonstrate
the effectiveness of our approach on challenging real-world
datasets like GREW, Gait3D and BRIAR. We release the
code in https://github.com/Ayush-00/mimicgait.

1. Introduction
Gait is an important biometric feature which can be used

for identifying humans [28], especially when the face is
not visible. There has been significant progress in the field
of Gait Recognition - the problem of recognizing subjects
based on their walking pattern. Gait recognition can be per-
formed by placing wearable sensors on subjects [10, 17],
however, such methods require the subjects’ cooperation
and are not scalable. With progress in computer vision, the
popularity of gait recognition techniques using only vision-
based modalities has risen significantly. As a result, gait has
gained a unique importance among all biometric signatures
as one of the few identifying characteristics in humans that
can be captured effectively at a distance.

There has been significant progress in the field of vision-

Figure 1. Visualizations of the synthetic occlusions used in our
experiments, taken from the GREW dataset. The original holistic
video is shown in the top left. Middle occlusions are shown in the
top right. The second row shows the same video with consistent
synthetic occlusions. The bottom most row shows the same video
with dynamic occlusions. The boundary of the moving occlusion
patch is shown in red for visualization purposes only.

based gait recognition [32], with some methods achieving
almost perfect scores on indoor controlled datasets [5, 23].
With saturation in controlled scenarios, there has been an
increased focus on outdoor, in the wild scenarios [2, 44].
Such datasets pose much bigger challenges to gait recogni-
tion - due to large variations in viewpoint, altitude, clothing,
background, illumination changes and occlusion.

A deployed gait recognition system should be able to
handle occlusion scenarios. There can be many types of
occlusions; arising from an obstruction between the cam-
era and the subject, or due to improper camera placement.
Occlusion can be consistent, such as an elevated sidewalk
blocking a subject’s feet for the entire sequence, or dy-
namic, such as another person or a stationary object tem-
porarily blocking the subject of interest from view. With
gait being recognized as a viable option for biometrics, it is
important to address occlusion within gait recognition.

Most current work on gait recognition does not address
this problem specifically; the lack of a large-scale dataset
focused on occlusion has resulted in slow progress in the
area. Some works that focus on this problem simulate oc-
clusions on indoor datasets [36] or work with small datasets
[33]. Moreover, most current approaches assume an ideal
occlusion scenario, where the subject is close to the camera



and clearly visible. In a more practical in-the-wild scenario,
the subject could be hundreds of meters away, and the cam-
era may be situated at an altitude, and it is not easy to extend
these approaches to such unconstrained data.

[34] uses a generative network to synthesize complete
gait sequences in the case of occlusion. However, it will
be difficult to generate such sequences when the partial in-
put is itself of low quality. Similarly, [36] uses an SMPL-
based human mesh model to construct the gait signature,
but the 3D structure of the body is not easy to recover from
noisy data collected at a distance of several hundred metres,
that too in the presence of occlusions. [13] generates occlu-
sion aware features and inserts them inside the gait recogni-
tion network. However, it is limited by the assumption that
the network can independently learn discriminative features
through an occlusion detector, neglecting the potential cor-
relations between occluded and visible body parts.

To address these challenges, we propose MimicGait,
a model-agnostic approach to generate discriminative gait
features for subjects at range under occlusion using correla-
tional knowledge distillation. We assume that temporal pat-
terns which exist in the occluded sections of the subject are
correlated with the observable motion in the gait sequence.
We adopt a knowledge distillation approach to learn these
correlations among the occluded and visible parts of the
body, enabling the network to produce features closer to the
ideal, holistic features. Building upon the work by [13], we
also utilize a Visibility Estimation Network (VEN) to intro-
duce occlusion-relevant features into our method to enhance
the prediction of these missing correlations. Our approach
is model-agnostic and can be used to increase the perfor-
mance of any state-of-the-art gait recognition method to ex-
tend it to occlusions. Lastly, being a vision-based method, it
can work with noisy data captured at a distance. We demon-
strate the performance of our proposed method on the pub-
licly available GREW [44] and Gait3D [42] datasets. Ad-
ditionally, we also evaluate our approach on the BRIAR [2]
dataset, which includes variations in range, altitude, cloth-
ing and walking conditions.

We also introduce some practical evaluation schemes for
occluded gait recognition. We formalize the concept of
Generalizability, introduced in [13], relating model perfor-
mance on unseen occlusions. We further introduce a con-
cept of Adaptability, relating to how well the model can be
trained/adapted to newer occlusions. This becomes useful
where a certain type of occlusion is expected to occur fre-
quently in deployment. Lastly, we propose another metric
for occluded gait recognition called relative performance,
RP, which measures the occluded recognition performance
of the model relative to performance on ideal, holistic data.
We show that it is a better metric to evaluate occluded per-
formance. Together with generalizability, adaptability and
RP, we perform an extensive analysis of our method and

show that it outperforms previous works.
In summary, our main contributions are

• We propose MimicGait, a novel model-agnostic ap-
proach to generate robust gait features under occlu-
sions in various conditions, viewpoints, and distances.

• We demonstrate the utility of a multi-instance correla-
tional knowledge distillation approach to learn the cor-
relations between occluded and visible motion patterns
across multiple gait instances of a subject.

• We improve upon the auxiliary occlusion detector pro-
posed in previous works and propose a Visibility Es-
timation Network to enhance gait recognition perfor-
mance under occlusions.

• We introduce the concepts of generalizability, adapt-
ability, and a new metric RP for evaluating oc-
cluded gait recognition performance. Across these
benchmarks, our approach outperforms other works
on GREW, Gait3D, and the challenging real-world
BRIAR dataset.

2. Related Work

2.1. Gait Recognition

Traditionally, gait recognition was performed using
wearable motion sensors [10, 24]. With advances in com-
puter vision techniques, gait recognition has become an
attractive method for human identification at a distance
[8]. These techniques can be classified into two cate-
gories based on the data modality; 1) Skeleton-based and
2) Vision-based. Skeleton-based gait recognition systems
[6,9,14,21,22,40] first use pose estimation techniques [3] to
extract the joints/keypoints from the input image or video.
This introduces a bottleneck in the form of the pose estima-
tion method. Vision-based gait recognition systems usually
operate on silhouettes [4, 5, 7, 23, 44]. Some progress has
been made to utilize the RGB modality [41] for gait recog-
nition. However, RGB videos have a lot of irrelevant infor-
mation like background, texture, and color. To account for
this, works like [19,20] adopt an end-to-end approach while
learning silhouettes.

Performance of gait recognition methods has almost sat-
urated [5, 23] on indoor controlled datasets like CASIA-
B [39]. To further advance research in this field, more chal-
lenging real-world datasets like GREW [44], Gait3D [42]
and BRIAR [2] have been collected with large variations
in viewpoints, altitude, and other conditions. To overcome
the new challenges posed by such outdoor datasets, works
like [12] use multiple modalities for the recognition task.



Figure 2. Overview of the proposed approach. The training procedure consists of two stages. In the pretraining stage, the Visibility
Estimation Network V (also called VEN) and the teacher network Ft are trained. In the distillation stage, a new mimic network Fm is
trained by Ft using a multi-instance correlational KD loss. V is used to guide Fm by injecting occlusion-relevant features. The ith video
of subject a may be occluded (denoted by Oa

i ) or holistic (denoted by Ca
i ). Their representations in the latent space are denoted by γm

and γt respectively. The three types of anchor-positive pairs sampled by the proposed loss seen in the figure are described in Sec. 3.3.

2.2. Occluded Person Re-ID and Gait Recognition

Occlusions can severely hamper gait recognition and
Person Re-ID systems [27, 38]. Occlusion has already been
recognized as an important problem in Person Re-ID [30],
with datasets targetting the occlusion problem specifically
[25, 45]. Current works deal with simulated occlusions [1]
as well as real occlusions [26]. [1] categorizes occlusions
into different broad categories and uses this knowledge to
better identify the subject, while [26] uses pose estimation
techniques to identify visible body parts, generating differ-
ent representations for each part.

Unlike the Person Re-ID problem, occlusion has not re-
ceived much attention in gait recognition due to lack of
large-scale datasets. Some available works focus on recon-
struction [33,34] of the silhouette sequence using generative
networks or estimate an SMPL-based 3D mesh model [36]
to infer the missing body parts. However, these approaches
are not easily extendable to long ranges or noisy data, as
would be the case in a real-world scenario.

Some works simulate occlusions in existing datasets and
utilize auxiliary networks to gain additional information
about occlusions [13, 37]. [37] performs silhouette registra-
tion to enhance the input, but only works with top occlu-
sions on indoor datasets. [13] works on outdoor data and
a diverse set of occlusions, but neglects the potential cor-
relations between occluded and visible body parts due to
exclusive exposure to occluded data during training.

2.3. Knowledge Distillation
Broadly, Knowledge Distillation (KD) involves a

student-teacher learning framework where one model
passes on its ‘knowledge’ to another model [11]. Initially,
KD was used as a technique for model compression and
acceleration [16], where a large model was used to train a
smaller network to reduce memory and computing require-
ments. However, the utility of KD was shown in other ar-
eas as well. [31] used the idea of data distillation to train a
student network using a single teacher by applying multi-
ple transforms on the input. [15] used distillation to teach
a student network to dehaze an image by applying consis-
tency loss in intermediate features between the student and
teacher. [29] proposes correlational congruence in knowl-
edge distillation, utilizing correlation across multiple in-
stances to teach their student network. [43] uses KD in the
context of gait recognition, transferring knowledge from
RGB to silhouette encoders to infer 3D body features.

To work with occluded data captured from a distance, we
utilize KD to capture correlations among the occluded and
visible body parts to learn a gait signature for the subject.

3. Proposed Method
Given an input video sequence Si = {v1, v2, ...vn} for

subject i, the goal is to find a discriminative gait signature γ
for the subject. We assume that the input sequence consists
of binary silhouette masks. In the occlusion scenario, this
mask may not be completely visible in some or all of the



frames which makes the task more challenging.
The overview of the proposed approach is shown in

Fig. 2. The entire training procedure consists of two stages
- the pretraining stage, and the distillation stage. In the pre-
training stage, a state-of-the-art gait recognition model Ft is
trained on the original unoccluded video frames. Separate
from Ft, the VEN V is also trained to identify the amount
and type of synthetic occlusions present in the video. These
two networks are used in the next stage with frozen weights.

In the distillation stage, a new network Fm, the mimic
network, is initialized with the same architecture as Ft. Fm

is trained to output a gait signature γm by taking the oc-
cluded video Oi as input. At the same time, Ft outputs
the gait signature γt by taking the corresponding full body
video Ci as input. A multi-instance correlational distilla-
tion loss is used to train Fm to bring the distributions of γm
and γt closer in the latent space. VEN is used to regulate
Fm by injecting visibility information into the backbone.
The method is described in detail in the following sections.

3.1. Visibility Estimation Network

VEN is a CNN that predicts the type of occlusion, if any,
present in the input video and also a measure of the amount
of this occlusion, which we call visibility estimation. This
module is inspired by [13], where an auxiliary network was
used to identify the occlusion class. VEN builds on top
of [13] by performing the visibility estimation task while
simultaneously predicting the occlusion type.

In the pretraining stage, VEN is trained on synthetic oc-
clusions. Some examples of the occlusions are shown in
Figure 1. It consists of a sequence of convolutional and lin-
ear layers, with two parallel heads - one classification head
for the occlusion classification task, and one regression head
for the visibility estimation task. Accordingly, cross entropy
and L2 regression losses are used on the two heads to train
the network, making it learn occlusion-relevant features.

When VEN is used in the distillation stage, the two heads
are removed and the penultimate feature vector δ is used
to guide Fm. It is important to note that the weights of
VEN are frozen during this stage, to ensure that it retains
the visibility awareness learned during training.

3.2. Mimic Network
The main idea behind the mimic network is that the fea-

tures corresponding to the missing/occluded body parts are
correlated with the observable motion of the subject. Every
moving body part is correlated to a global pattern and also
has its own distinctive local motion, which is why pyramid
structures operating on multi-scale input are popular in gait
recognition [7,23]. It is these patterns of motion that consti-
tute gait, and when some of these patterns are missing, the
mimic network uses its learned correlations and the avail-
able input to fill in the gaps in the gait signature.

During the pretraining stage, a state-of-the-art gait
recognition backbone Ft is trained on the original, unoc-
cluded videos to generate discriminative gait signatures γt.
During the distillation stage, Fm is trained to output a dis-
criminative gait signature γm using the occluded videos Oi

as input. Since occlusions can be of many different types,
and the internal architecture of Fm does not target any oc-
clusion, we use the occlusion-relevant features from VEN
to guide Fm, similar to [13]. Specifically,

γm = F
′

m(Oi) = T (Fm(Oi)⊕ V(Oi)) (1)

where V refers to VEN, ⊕ is the concatenation operation,
and T is a linear transformation to make the feature size
compatible after concatenation. By introducing visibility
features from VEN into Fm in such a manner, the network
gains information about the visibility of the subject in the
input, which in turn helps it to generate features closer to
the optimal holistic features.

In the distillation stage, Ft acts as a teacher network and
F ′

m tries to mimic the holistic features generated by Ft.
However, the difference is that F ′

m is only allowed to see
the occluded videos during training. In the process of try-
ing to mimic the holistic features from the occluded inputs,
Fm is able to learn better gait representations for occlusion
scenarios. This is achieved by using a multi-instance corre-
lational distillation loss as described in the next section.

3.3. Multi-instance Correlational Distillation Loss

Inspired by [29], we use a multi-instance correlational
KD loss modified for the occluded gait recognition task. We
recognize that while there is correlation within the motion
of different body parts of the same gait instance, there is
also correlation among the motion of the body parts across
multiple gait instances of the same subject. The distillation
loss, modeled as a Triplet Loss [35], is able to capture both
these correlations. As shown in Fig. 2, the outputs of the
mimic network, γm, and those of the teacher network, γt,
are used to sample anchor-positive pairs of the following
three types: 1) γi

m - γi
t , representing student-teacher learn-

ing within the same gait instance, 2) γi
m - γj

t , representing
student-teacher learning across instances, and 3) γi

m - γj
m,

representing mimic network correlation across instances.
These considerations lead to a triplet margin loss:

L =
∑
i

[Di
a,p −Di

a,n +m]+ (2)

where the summation is over all anchor-positive-negative
triplets and Da,p, Da,n refer to the Euclidean distance be-
tween the anchor-positive (AP) or anchor-negative (AN)
pairs. The AP pairs are sampled from the previously men-
tioned three types, while the AN pairs are sampled from
other identities, and m is the margin.



Figure 3. Some samples images taken from the BRIAR dataset
for two subjects. From left to right, the range of capture increases
from close range to 1000m for each subject. A large variation in
the quality of the videos and the collection conditions can be seen.
Subjects have consented to the use of these images in publication.

Inference: During inference, when only the occluded
video is available, the mimic network Fm guided by the
VEN is used to generate the gait features.

4. Experimental Setup
4.1. Datasets

BRIAR: We use the BRIAR [2] dataset to conduct our ex-
periments. This is a recently collected dataset that contains
many variations in the walking conditions of subjects. The
subset of BRIAR data we use comprises of 776 training sub-
jects and 856 test subjects. The dataset contains videos of
subjects walking in indoor, controlled environments as well
as outdoor field environments. The outdoor data is captured
from many different camera sensors, ranges, altitudes and
viewpoints. Some example images are shown in Fig. 3.

Videos of walking subjects in outdoor environments are
captured systematically at distances ranging from 100m to
1000m. Additionally, videos are also captured using an
UAV and at close range with extreme viewpoint.

Each subject either walks randomly inside a fixed bound-
ary (random), or along well-defined straight lines (struc-
tured), or both, in different videos. The subject may be car-
rying a large object like a big cardboard box in some videos,
while some may be using their cellphones while walking.

GREW: GREW [44] is a large scale publicly available
dataset for gait recognition, comprising of 20,000 subjects
in the training split and 6,000 in the testing split. The dataset
is captured from in-the-wild videos in a variety of condi-
tions from multiple different cameras with varying view-
points. We utilize the provided 2D silhouettes in this work.

Gait3D: Gait3D [42] is a publicly available in-the-wild
gait recognition dataset, comprising of 3,000 subjects in the
training set and 1,000 subjects in the testing set. We utilize
the provided 2D silhouettes of the dataset in this work.

4.2. Synthetic Occlusions

Broadly, occlusions can be classified into two categories
- 1) consistent, where the occlusion stays roughly the same
for the entire length of the video, and 2) dynamic, where
they can change with time.

In uncontrolled environments, consistent occlusions oc-
cur when there are obstacles like an elevated sidewalk or
tall grass between the subject and the camera, or they might

arise due to a bad camera angle. Dynamic occlusions occur
when objects, or other people, temporarily block the subject
of interest from view. We try to simulate both consistent and
dynamic occlusions by placing stationary or moving black
patches on the input frames, as shown in Fig. 1. For consis-
tent occlusions, we remove either the top, bottom or middle
part of the frame. Other works on occluded gait recogni-
tion [13] simulate more type of occlusions, however many
of these occlusions are not likely to occur in a practical sce-
nario. We focus on the the top and bottom occlusions in our
main results and perform generalizability and adaptability
evaluations using middle and dynamic occlusions in Sec. 5.

Occlusions are introduced randomly in the videos dur-
ing training and evaluation. We randomly occlude a por-
tion of the frame as shown in Fig. 1. The amount of oc-
clusion is selected randomly within a fixed range R, which
we set to (0.4, 0.6) for all our experiments. This means
that the portion of the synthetic occlusion is chosen ran-
domly between 40%-60% of the spatial dimensions of the
input video. More details about the synthetic occlusions
have been included in the supplementary material.

4.3. Baselines

To showcase the model-agnosticity of our method, we
experiment with existing architectures like GaitBase [5],
GaitGL [23] and deeper networks like DeepGaitV2 [4].

Following [13], we train these networks on holistic
videos and evaluate them directly on synthetic occlusions
in a zero-shot setting. This is called Baseline-1. Since these
architectures do not address the occlusion problem specif-
ically, we retrain them on synthetically occluded data as
Baseline-2. We also compare our results with [13].

4.4. Implementation Details

Visibility Estimation Network: VEN consists of three
convolutional layers and two linear layers. VEN consists of
two heads - a classification head for classifying occlusions
and a regression head for visibility estimation. In our ex-
periments, VEN is trained to classify the input into three
classes, namely, no occlusion, top occlusion and bottom oc-
clusion. This set is updated as more occlusion types are
introduced for training the mimic network. More details
about VEN are included in the supplementary material.

Mimic Network: We localize the subjects in an H×W =
64× 64 bounding box during preprocessing and crop these
bounding boxes from the video. The mimic network ar-
chitecture is the same as the gait recognition backbone Ft.
Training occurs in two stages. We train Ft on holistic
videos in the pretraining stage. Next, we train Fm using fea-
tures obtained by Ft in the distillation stage. We choose the
same optimizer as used by Ft during pretraining, namely
Adam [18] for GaitGL and SGD for GaitBase and Deep-



Backbone Method Gait3D GREW BRIAR
Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-20 TAR@0.01 FAR

GaitBase

Baseline-1 7.6 (0.11) 15.71 (0.19) 14.85 (0.27) 25.55 (0.35) 1.34 (0.04) 12.05 (0.16) 2.46 (0.04)
Baseline-2 17.12 (0.24) 31.43 (0.37) 16.42 (0.30) 30.38 (0.42) 6.13 (0.16) 27.52 (0.36) 9.81 (0.17)

Occlusion Aware [13] 18.22 (0.26) 34.94 (0.41) 22.55 (0.41) 37.95 (0.53) 8.70 (0.23) 35.38 (0.46) 12.83 (0.22)
Mimic Network (ours) 22.72 (0.32) 40.84 (0.48) 28.38 (0.51) 45.43 (0.63) 10.93 (0.28) 42.25 (0.55) 12.92 (0.22)

GaitGL

Baseline-1 3.00 (0.11) 6.70 (0.15) 3.60 (0.10) 6.90 (0.13) 0.69 (0.05) 6.70 (0.18) 1.90 (0.09)
Baseline-2 4.4 (0.16) 9.71 (0.22) 6.3 (0.17) 11.92 (0.22) 1.94 (0.15) 13.17 (0.35) 3.42 (0.16)

Occlusion Aware [13] 4.8 (0.18) 12.7 (0.29) 7.05 (0.19) 12.72 (0.24) 4.02 (0.30) 22.85 (0.61) 4.19 (0.19)
Mimic Network (ours) 5.6 (0.21) 13.5 (0.31) 7.53 (0.21) 13.97 (0.26) 5.4 (0.40) 24.75 (0.66) 5.14 (0.23)

DeepGaitV2

Baseline-1 2.20 (0.03) 6.21 (0.07) 3.72 (0.05) 6.85 (0.08) 2.38 (0.05) 11.40 (0.13) 1.80 (0.03)
Baseline-2 6.71 (0.09) 14.21 (0.16) 9.65 (0.13) 16.20 (0.19) 6.52 (0.13) 27.47 (0.32) 7.40 (0.11)

Occlusion Aware [13] 14.01 (0.18) 27.83 (0.32) 13.38 (0.18) 22.87 (0.27) 7.39 (0.15) 32.74 (0.38) 7.12 (0.10)
Mimic Network (ours) 16.82 (0.22) 33.03 (0.38) 14.38 (0.20) 24.93 (0.29) 11.49 (0.24) 44.71 (0.52) 20.73 (0.30)

Table 1. Our results on the Gait3D [42], GREW [44] and BRIAR [2] datasets, for different gait recognition backbones. Baseline-1 refers
to zero shot evaluation on occluded data. Baseline-2 refers to training the network on occlusions. The values in (.) denote the relative
performance (RP) values with respect to the ideal, no occlusion scenario. We can see that the mimic network outperforms other methods
on occluded data, achieving at least 20-30% RP across datasets and backbones.

GaitV2. The learning rate for GaitGL experiments is 1e-4,
while for GaitBase and DeepGaitV2 it is 1e-1. Additional
details about the training procedure of the mimic network
have been included in the supplementary material.

4.5. Evaluation Metrics
Rank Retrieval: Rank retrieval accuracy is a standard
metric to evaluate recognition performance. We follow
the gallery-probe splits of [5] for GREW and Gait3D. For
GREW, the probe set labels are not publicly released. To
enable local evaluation for the GREW dataset, we follow
the method proposed in [5], the details of which are pro-
vided in the supplementary material. The BRIAR dataset
provides its own protocol [2]. We additionally compute the
verification performance for BRIAR.

Relative Performance (RP): In the model-agnostic sce-
nario being discussed in this work, we need to measure
the effectiveness of an occlusion-mitigating method across
backbones. Considering only the performance of a model
on occluded data - the occluded performance OP - gives
an incomplete picture. This is because a low OP might
be caused by other factors not related to the strength of
the occlusion-mitigating method - such as the backbone be-
ing suboptimal or the dataset being too difficult. To filter
out these other factors and focus on just the strength of the
occlusion-mitigating method, we define a new RP metric,

RP =
OP

HP
(3)

where OP is the occluded performance and HP is the
holistic performance on unoccluded data for a given back-
bone. If the backbone is suboptimal or the dataset is too
difficult, both OP and HP are low, therefore the RP is not
affected very much. However, if the occlusion-mitigating
method is suboptimal, only the OP is low - reducing the
RP. This makes RP relatively more suited to model-agnostic
evaluation of occlusion-mitigating methods, like the one in-
troduced by [13] and our proposed mimic network.

Another way of looking at RP is that it normalizes the
OP by its true upper bound HP , so changes in OP are
measured with respect to HP . A small improvement ∆y
in OP may seem insignificant, but becomes important if
HP itself is small - for example, an improvement of 1%
in Rank-1 accuracy in OP is significant if the upper bound
HP is itself just 10%!

Fig. 4 provides a geometric interpretation of this sce-
nario. B1/B2 are two hypothetical backbones and M1/M2
are two occlusion-mitigating methods. RP is the slope of the
line joining origin to M1/M2. For the suboptimal backbone
B1, a small ∆y1 by using M2 over M1 can cause a large
change in slope/RP. On the other hand, a larger increase
of ∆y2 in OP is needed to cause similar improvements in
slope/RP. Thus, RP gives more insight into the improvement
brought about by M2 in this backbone-agnostic scenario by
normalizing OP by the performance of the backbone.

Adaptability: This test aims to evaluate how well a
model adapts to new occlusion types when it is further
trained on them along with the original occlusions. This test
provides a new perspective - it analyses the scenario when
we want to extend the model’s capability to a new occlusion
type by additional training. The results of the adaptability
evaluation are presented in Tab. 2.

Generalizability: While having prior knowledge about
occlusion types is an advantage, it is not practical to train on
all possible occlusion types. For a method to be deployable,
it should be able to generalize to occlusions not seen during
training. This idea of generalizability to different occlusions
was introduced in [13]. In the generalizability test, we take
models trained on top and bottom occlusions and evaluate
them directly on the newer occlusion types, in a zero-shot
setting. The results are presented in Tab. 2.

5. Results and Discussion
In general, we observe that the mimic network outper-

forms other methods for occluded gait recognition. This



Figure 4. Comparing two hypothetical occlusion-mitigating meth-
ods M1/M2 between two backbones B1/B2 on occluded perfor-
mance (OP ) and holistic performance (HP ). A small change
∆y1 in OP can cause a large change in the slope/RP for B1, but a
larger ∆y2 is needed to cause a similar change in slope for B2. By
considering the slope rather than just the OP , RP is able to better
isolate the effect of M1/M2 across backbones.

statement holds across datasets and backbones, demonstrat-
ing the effectiveness and model-agnosticity of our method
(Tab. 1). The generalizability and adaptability results pre-
sented in Tab. 2 confirm that the mimic network also outper-
forms other approaches here. Thus, we conclude that cap-
turing correlations among occluded and visible body parts
using our proposed mimic network does indeed help in oc-
cluded scenarios. However, apart from this general trend,
we make several interesting observations.

Insights from the RP metric: In some cases, perfor-
mance improvements are not visible just from Rank-K ac-
curacy, such as with GaitBase on BRIAR or GaitGL on
Gait3D, due to low absolute performance. This is attributed
to the challenging nature of the datasets (e.g., BRIAR with
extreme range and turbulence) or lower capability of back-
bones (e.g., GaitGL). The RP metric can filter out these fac-
tors to some extent. It is not perfect at filtering these factors,
and RP might still change across backbones, but improve-
ments are easier to see in RP even in the case of suboptimal
backbones or difficult datasets.

Increasing RP with Rank: An interesting observation is
the effect of rank. As rank increases, both absolute accu-
racy and RP increase across all experiments. The increase
in RP is non-trivial because RP is the ratio of occluded to
holistic accuracy, and the rising RP indicates that occlu-
sion accuracy grows faster than holistic accuracy as rank
increases! This is possibly because the model is better at
leveraging partial information to correctly identify occluded
instances when given more opportunities (higher rank) to
match. Holistic data already benefits from complete infor-

mation, leading to a relatively slower increase in accuracy.

Deeper networks: DeepGaitV2 is considered to be better
than GaitBase as a backbone [4]. Interestingly, we observe
that it performs worse under occlusions in many of our ex-
periments. We think that the larger number of parameters
and the larger depth of DeepGaitV2 make it harder to op-
timize under occluded conditions where the input is more
sparse. Regardless, the mimic network still performs better
than the occlusion aware method for this backbone as well.

Relative difficulty of different occlusions: Comparing
Tab. 1 and the adaptability section Tab. 2 suggests that mid-
dle and dynamic occlusions are easier than top and bottom
occlusions, since the model is able to perform better on the
former set. We investigate this further in the supplementary
material by evaluating on these occlusions individually.

5.1. Ablation Studies
In this section, we perform various ablations on the pro-

posed network, removing or modifying different parts of the
model to see their effects on performance. For all the exper-
iments in this section, we use the GREW [44] dataset and
the GaitBase [5] backbone unless stated otherwise.

Effect of Multi-instance Correlational KD loss: In
this section, we analyse the effect of the proposed multi-
instance correlational distillation (MiCKD) loss on the net-
work. To isolate the effects of the MiCKD loss, we remove
the VEN in the experiments in this section, and deal with a
‘Vanilla Mimic’ network. If we completely remove the dis-
tillation loss from this Vanilla Mimic network, the method
becomes the same as Baseline-2, which does not capture
any occluded-visible body part correlations. Next, we try
a simpler approach for the distillation stage by consider-
ing correlations among γm and γt only within the same in-
stance, minimizing the L2 distance between them (L2 KD).
Comparing this to MiCKD in Tab. 3 isolates the effect of
utilizing multiple instances for feature learning.

We observe that the latter performs better, possibly be-
cause local gait patterns remain consistent across walking
instances. The model is able to leverage this consistency to
learn correlations among body parts which are occluded in
one instance but visible in another.

Adding Cross Entropy Loss: Based on the training
techniques of Ft, we hypothesize that adding cross entropy
loss using a BNNeck layer as done in [5] would further help
the model along with MiCKD loss. However, as shown
in Tab. 3, our hypothesis is negated and we observe that
this approach actually reduces the model performance. We
are unsure why this occurs, and hypothesize that the losses
could conflict with each other. Based on this, we choose to
exclude cross-entropy loss in the final model.

Effect of guidance by VEN: In this section, we ana-
lyze the role of VEN in the mimic network. We compare
the vanilla mimic network with the ‘Mimic + VEN’ row of



Additional
Occlusion Type Method Generalizability Adaptability

Rank1 Rank5 Rank1 Rank5

Middle
Baseline-1 13.12 (0.24) 24.62 (0.34) - -
Baseline-2 13.87 (0.25) 25.72 (0.36) 21.25 (0.38) 36.5 (0.51)

Occlusion Aware [13] 17.93 (0.32) 32.15 (0.45) 26.7 (0.48) 43.82 (0.61)
Mimic Network (ours) 21.73 (0.39) 37.37 (0.52) 34.78 (0.63) 52.75 (0.73)

Dynamic
Baseline-1 17.27 (0.31) 28.05 (0.39) - -
Baseline-2 17.48 (0.32) 31.53 (0.44) 32.1 (0.58) 49.68 (0.69)

Occlusion Aware [13] 21.27 (0.38) 36.5 (0.51) 34.87 (0.63) 52.07 (0.72)
Mimic Network (ours) 26.77 (0.48) 42.9 (0.60) 36.65 (0.66) 53.15 (0.74)

Table 2. The Adaptability (additional training) and Generalizability (zero-shot) evaluations using the GaitBase backbone on GREW
dataset, using additional occlusion types. RP values are shown in (.). Note that adaptability is not applicable for Baseline-1, since
Baseline-1 is not trained on any occlusions. The mimic network outperforms other approaches in these scenarios.

Method Rank-1 Rank-5
No KD (Baseline-2) 16.42 30.38

L2 KD 20.43 35.95
MiCKD (Vanilla Mimic) 25.75 42.2

MiCKD + XE 20.22 34.93

Table 3. Different distillation strategies for the mimic network,
using GaitBase on the GREW dataset. We see that the proposed
multi-instance correlational knowledge distillation loss (MiCKD)
indeed helps in learning better occlusion features.

Mimic Proxy Tasks Accuracy
Method Classif. Reg. Rank-1 Rank-5

Baseline-2 16.42 30.38
Occlusion aware [13] ✓ 22.55 37.95

VEN ✓ ✓ 23.52 39.68
Vanilla Mimic ✓ 25.75 42.2

Mimic + Occlusion Aware ✓ ✓ 27.52 44.15
Mimic + VEN ✓ ✓ ✓ 28.38 45.43

Table 4. Effect of the mimic training strategy and the proxy tasks
involved in the pretraining of the occlusion detector. Classif. and
Reg. refer to the classification and regression tasks respectively. In
general, training the auxiliary network on more tasks and using the
mimic training strategy improves performance under occlusions.

Tab. 4. The mimic network benefits from VEN guidance;
without VEN, the network must independently determine
which body parts are visible, complicating the extraction
of gait patterns. In contrast, external guidance from VEN
simplifies this task, allowing the network to focus on gait
pattern extraction rather than occlusion identification.

Different proxy tasks for training VEN: In the VEN
pretraining stage, we train it to jointly output the occlusion
type and the occlusion amount, with two different loss func-
tions for each task. In this section, we investigate how use-
ful these two individual tasks are for learning useful occlu-
sion aware features. As such, we train a network without
the occlusion amount regression head, making it similar to
the occlusion detector in [13] and compare it with VEN.

To get an estimate of the quality of occlusion awareness
within these two networks, we compare the performance
of gait recognition backbones trained using VEN and the
occlusion detector in Tab. 4. We observe that VEN has
inherently better occlusion relevant features, regardless of
whether the mimic training strategy is applied or not - and

so we conclude that the classification and regression proxy
tasks individually contribute to performance.

6. Limitations and Future Work

Although our proposed method can perform better on
synthetic occlusions, it is not perfect. We proposed a
general approach without altering the backbone, and fu-
ture works can explore incorporating specific architectural
changes to address occlusions better. Further, we could not
test our approach on real occlusions due to the absence of
an occlusion category in the outdoor datasets we used. To
properly evaluate our method, a large-scale dataset specifi-
cally focused on occlusions is essential to advance research
in this area. Lastly, we were unable to explore why adding
cross entropy loss hurts MimicGait. Future work can ex-
plore this further to achieve more gains in performance.

7. Conclusion

In this work, we proposed MimicGait, a novel model-
agnostic approach for occluded gait recognition. We pro-
posed a multi-instance correlational KD loss to train the
mimic network in a student-teacher setting, utilizing an aux-
iliary Visibility Estimation Network to introduce occlusion-
relevant features. We introduced generalizability and adapt-
ability tests along with a new metric RP to evaluate oc-
cluded performance. We evaluated our approach on GREW,
Gait3D and BRIAR datasets, and showed that the proposed
mimic network outperforms existing approaches on occlu-
sions on real-world data collected from large distances.

Acknowledgements: This research is based upon
work supported in part by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Ad-
vanced Research Projects Activity (IARPA), via [2022-
21102100005]. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies, either ex-
pressed or implied, of ODNI, IARPA, or the U. S. Govern-
ment. The US. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstand-
ing any copyright annotation therein.



References
[1] Peixian Chen, Wenfeng Liu, Pingyang Dai, Jianzhuang Liu,

Qixiang Ye, Mingliang Xu, Qi’an Chen, and Rongrong Ji.
Occlude Them All: Occlusion-Aware Attention Network for
Occluded Person Re-ID. pages 11833–11842, 2021. 3

[2] David Cornett, Joel Brogan, Nell Barber, Deniz Aykac, Seth
Baird, Nicholas Burchfield, Carl Dukes, Andrew Duncan,
Regina Ferrell, Jim Goddard, Gavin Jager, Matthew Lar-
son, Bart Murphy, Christi Johnson, Ian Shelley, Nisha Srini-
vas, Brandon Stockwell, Leanne Thompson, Matthew Yohe,
Robert Zhang, Scott Dolvin, Hector J. Santos-Villalobos,
and David S. Bolme. Expanding accurate person recognition
to new altitudes and ranges: The briar dataset. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) Workshops, pages 593–602, Jan-
uary 2023. 1, 2, 5, 6

[3] Qi Dang, Jianqin Yin, Bin Wang, and Wenqing Zheng. Deep
learning based 2d human pose estimation: A survey. Ts-
inghua Science and Technology, 24(6):663–676, 2019. 2

[4] Chao Fan, Saihui Hou, Yongzhen Huang, and Shiqi Yu. Ex-
ploring deep models for practical gait recognition. arXiv
preprint arXiv:2303.03301, 2023. 2, 5, 7

[5] Chao Fan, Junhao Liang, Chuanfu Shen, Saihui Hou,
Yongzhen Huang, and Shiqi Yu. Opengait: Revisiting gait
recognition towards better practicality. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9707–9716, June 2023. 1, 2, 5,
6, 7

[6] Chao Fan, Jingzhe Ma, Dongyang Jin, Chuanfu Shen, and
Shiqi Yu. Skeletongait: Gait recognition using skeleton
maps. arXiv preprint arXiv:2311.13444, 2023. 2

[7] Chao Fan, Yunjie Peng, Chunshui Cao, Xu Liu, Saihui Hou,
Jiannan Chi, Yongzhen Huang, Qing Li, and Zhiqiang He.
Gaitpart: Temporal part-based model for gait recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020. 2, 4

[8] Claudio Filipi Gonçalves dos Santos, Diego de Souza
Oliveira, Leandro A. Passos, Rafael Gonçalves Pires,
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